Robust Classification Systems for Imprecise Environments
نویسندگان
چکیده
In real-world environments, it is usually diicult to specify target operating conditions precisely. This uncertainty makes building robust classiication systems problematic. We show that it is possible to build a hybrid classiier that will perform at least as well as the best available classiier for any target conditions. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision , recall, and workforce utilization. In some cases, the performance of the hybrid can actually surpass that of the best known classiier. The hybrid is also eecient to build, to store, and to update. Finally, we provide empirical evidence that a robust hybrid clas-siier is needed for many real-world problems.
منابع مشابه
Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملNeula: a Hybrid Neural-symbolic Expert System Shell
Current expert systems cannot properly handle imprecise and incomplete information. On the other hand, neural networks can perform pattern recognition operations even in noisy environments. Against this background, we have implemented a neural expert system shell NEULA, whose computational mechanism processes imprecisely or incompletely given information by means of approximate probabilistic re...
متن کاملDecision support under uncertainties based on robust Bayesian networks in reverse logistics management
One of the major challenges for product lifecycle management systems is the lack of integrated decision support tools to help decision-making with available information in collaborative enterprise networks. Uncertainties are inherent in such networks due to lack of perfect knowledge or conflicting information. In this paper, a robust decision support approach based on imprecise probabilities is...
متن کاملA Robust Strucutural Fingerprint Restoration
Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998